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Abstract  

 
Aerosol particles influence radiative forcing directly through reflection and absorption of solar and infrared radiation 

in the atmosphere. Some aerosols cause a positive forcing while others cause a negative forcing. They are also acting 

as nuclei for cloud formation Tropospheric aerosols are mainly composed of inorganic salts, accounting to 25–50% 

of the fine aerosol mass [2]. In this study, the optical properties of inorganic aerosols, including ammonium nitrate 

NH4NO3 and sodium nitrate NaNO3 are explored using the pseudo-potential plane wave (PP-PW) scheme in the 

frame of generalized gradient approximation (GGA). The dielectric functions, reflective index, extinction coefficient, 

reflectivity and energy-loss spectrum are calculated and discussed. The absorption spectra of ammonium nitrate and 

sodium nitrate are localized in the ultraviolet range between 75 and 350 nm and 60 and 380 nm respectively. 
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1. Introduction 

 
Environmental pollution has existed for centuries, but only started to be significant following the 

industrial era.  The ongoing growth of human activities has influenced the natural environment and cause 

innumerable problems related to pollution of water, soil, air and Earth’s atmosphere. In fact, this hazard is 

closely linked to the release of significant amounts of contaminants and hazardous materials, affecting the 

quality of life at local, regional and planetary scale. Therefore, an international consciousness has led 

decision-makers to consider the interest of the community and human being. In this sense, many scientific 

studies, both theoretical and experimental, have been made to be aware of pollution impact on climate 

change, health and the whole ecosystem. However, this study is devoted to potential properties of aerosols 

involved in radiatif forcing balance estimation.  

Aerosols are tiny particles present in the atmosphere with widely varying size, concentration and chemical 

composition. Some aerosols are emitted directly into the atmosphere whereas others are formed from 

emitted compounds. Aerosols contain both naturally occurring compounds and those emitted as a result of 

anthropogenic activities. [1,2]. 

The processes of interactions between aerosols, solar and terrestrial radiation and other 

components of the Earth system are complex and remain difficult to quantify accurately. Some 

aerosols cause a negative forcing by cooling the climate system while others cause a positive 

forcing. Aerosols act on the climate of three different routes. By their diffusion and absorption 

capacity, aerosols can directly modify the incident solar radiation and the terrestrial flux (direct 

and semi-direct radiative effect). They can also modify the microphysics of clouds by their 

physicochemical properties (indirect radiative effect) [2-4]. 
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The direct effect only concerns the influence of aerosols on radiation and describes the 

mechanisms of absorption and light scattering by aerosols. In the solar domain radiation, aerosols 

can diffuse a portion of the incident radiation, which has the effect of reducing the amount of 

energy reaching the ground, thus causing a cooling of the terrestrial surface (negative direct 

radiative forcing). In addition, certain types of aerosol can absorb solar energy causing a warming 

of the layer of the atmosphere where they are (positive direct radiative forcing). Aerosols can 

absorb and re-emit to the ground some of the radiation emitted by the earth's surface (thermal 

infrared), thus reinforcing the greenhouse effect (positive direct radiative forcing). [4,5]. 

On a global scale, that direct radiative forcing of aerosols has a cooling effect at the top of the 

atmosphere [-0.1 and 0.9 W/m2] [3]. However, at a regional scale, this direct radiative effect can 

become much greater over areas of high particle concentration.  

On the other hand, the radiative forcing of the total effect of aerosols in the atmosphere results 

from a negative forcing of most aerosols and a positive contribution from black carbon 

absorption. It is recognized that aerosols and their interactions with clouds compensate for a 

significant portion of the global mean forcing of greenhouse gases and contribute to poor 

accuracy in estimating total radiative forcing [3-5]. 

Tropospheric aerosols are mainly composed of inorganic salts, accounting for 25–50% of the fine 

aerosol mass [2]. Because of their potential environmental impacts, the properties of ammonium 

nitrate and sodium nitrate particles are extensively investigated. Many efforts are made to study 

theses aerosols under ambient tropospheric and stratospheric conditions [7, 8]. 

For laboratory studies, infrared spectroscopy is used to inspect vibration properties 

hygroscopicity and evaporation of ammonium nitrate [9-11]. Excimer laser fragmentation-

fluorescence spectroscopies are used to make quantitative measurements of ammonium nitrate 

particles [12]. Theoretically, first principles calculations using ab initio theory are employed in a 

number of investigations [13, 14] to study proton transfer and electronic properties of ammonium 

nitrate. 

Infrared (IR) and neutron diffusion studies [15-18] are used to investigate vibrational properties 

of sodium nitrate, hygroscopicity and its evaporation [19, 20]. Absorption of non-polarized light 

by NaNO3 crystal is used to study the optical properties [21]. On the theoretical front, first 

principles calculations using ab initio quantum mechanical method based on periodic Hartree-

Fock (PHF) theory are employed [21, 23] to investigate the electronic properties of the crystalline 

material for bulk, clean and defected surfaces.  

 

. 

2. Materials and Method 

 

The calculations are performed with CASTEP software package using the pseudo-potential plane 

wave (PP-PW) scheme in the frame of generalized gradient approximation (GGA). This program 

evaluates the total energy of periodically repeating based on density-functional theory and the 

pseudopotential approximation [24]. In this case, only the valence electrons are represented 

explicitly in the calculations, the valence-core interaction being described by nonlocal 

pseudopotentials.  

 

The calculations of the optical properties are performed and described by means of the dielectric 

function ε(ω)=ε1(ω)+iε2(ω). The imaginary part is calculated from the momentum matrix 
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elements between the occupied and unoccupied wave functions. The real part of the dielectric 

function is acquired from the Kramer–Kroning relationship. There are two contributions to ε(ω), 

namely, intraband and interband transitions. The contribution from intraband is important only 

for metals. The interband transitions can further be split into direct and indirect transitions. All 

other optical constants, such as the extinction coefficient k(ω), refractive index n(ω), reflectivity 

R(ω), absorption coefficient α(ω), and energy-loss spectrum L(ω), can be derived from ε1(ω) and 

iε2(ω). 
 

3. Results and Discussions 
 

3.1. Sodium nitrate 

The dielectric function ε(ω)=ε1(ω)+iε2(ω) of sodium nitrate was computed (Fig. 1). The 

imaginary part of the dielectric function ε2(ω), allows for a better understanding of the absorption 

and transference of energy within the solid. The imaginary part of the dielectric function is 

directly proportional to absorption spectrum. As revealed in figure 1, sodium nitrate absorbs in 

the region between 60 and 380 nm. (3eV-20eV). These are the wavelengths by which the material 

should be optically excited. 
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Figure 1. Real and imaginary parts of dielectric function as a function of photon energy for sodium nitrate. 

 

The static dielectric constant is ε1(0) = 2.68. The calculated results on the refractive index, 

extinction coefficient, reflectivity and energy-loss spectrum of sodium nitrate are shown in Fig. 2. 

The value of static refractive index is 1.46. It increases with energy in the visible region to reach 

a peak at about 4.5 eV. The maximum reflectivity value is about 33% at 5.9 eV. The energy-loss 

spectrum describes the energy-loss of a fast electron traversing the material. The peaks of the 

energy-loss spectrum are at about 6.1 eV, 14 eV and 17.2 eV. The important peak in this 

spectrum signifies the characteristic associated with the plasma resonance and the corresponding 

frequency is the so-called plasma frequency. 
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Figure 2. Calculated optical properties of sodium nitrate: Refractive index (n), extinction coefficient (k), 

reflectivity spectra (R) and electron energy loss (L). 
 

 

3.2. Ammonium nitrate 

The imaginary part of the dielectric function ε2(ω),  is directly proportional to absorption 

spectrum. As shown in Fig. 3 this aerosol absorbs in the region between 75 and 350 nm (3.5eV-

16.5eV). These are the wavelengths by which the material should be optically excited. The static 

dielectric constant is ε1(0)= 2.09. This value is in good agreement compared to those in other 

works [28]. 

The calculated results on the refractive index, extinction coefficient, reflectivity and energy-loss 

spectrum of ammonium nitrate IV are shown in Fig. 4. The static refractive index is found to 

have the value 1.45, which is in good agreement with those in [28]. It increases with energy in 

the visible region reaching a peak in the ultraviolet at about 4.6 eV. The maximum reflectivity 

value is about 33% at 6.8 eV. 
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Fig. 3. Real and imaginary parts of dielectric function as a function of photon energy for ammonium nitrate IV. 
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Fig.4. Calculated optical properties of ammonium nitrate IV: refractive index (n), extinction 

coefficient (k), reflectivity spectra (R) and electron energy loss (L). 
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The energy-loss spectrum describes the energy-loss of a fast electron crossing the material. The 

peaks of the energy-loss spectrum are at about 7.6 eV, 10.2 eV and 14.9 eV. The prominent peak 

in this spectrum signifies the characteristic associated with the plasma resonance and the 

corresponding frequency is the so-called plasma frequency. 

 

 

Conclusions 

In conclusion, we have calculated the optical properties of ammonium nitrate IV and sodium 

nitrate using plane-wave ab initio calculations based on density function theory and the 

pseudopotential method. The dielectric functions, optical constant such as reflective index, 

extinction coefficient, reflectivity and loss function are also calculated. This study shows that, 

ammonium nitrate and sodium nitrate absorbs radiations in the ultraviolet range between 75 and 

350 nm and 60 and 380 nm respectively. Furthermore, for both crystals the 2p states of the nitrate 

moiety play a major role in these optical transitions as initial and final states. 
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